A Robust Strategy for Handling Linear Features in
Topologically Consistent Polyline Simplification

Adler C. G. da Silva and Shin-Ting Wu

Department of Computer Engineering and Industrial AutaomatDCA)
School of Electrical and Computer Engineering (FEEC)
State University of Campinas (UNICAMP)
P.O. Box 6101, 13083-970 — Campinas, SP, Brazil

{acar doso, ti ng} @lca. f ee. uni canp. br

Abstract. Polyline simplification is a technique that reduces the nendj ver-
tices of a polygonal chain for the purpose of map generabimeand for speed-
ing up processing and visualization in GIS. Unfortunatétg majority of sim-
plification algorithms does not preserve the topologicailgistency of the map,
namely the spatial placement of a polyline with respectdelitand to its neigh-
bouring features. To overcome this problem, some appradehged on the con-
sistency of a point feature have been proposed. For the dasienplicity, they
unify the handling of linear and point features by considgra linear feature
as a sequence of point features. This solution, howevés,ifea few particular
cases. In this paper, we firstly examine the reason for itilafad then present
a robust strategy for remedying the remaining problemsaovuttabandoning the
basic principle of reducing a linear feature to a sequencpmnt features.

1. Introduction

Polyline simplification is one of most thoroughly studiedbgcts in map generalization.
It consists in reducing the number of vertices of a polygartadin in order to repre-
sent them at a smaller scale without unnecessary detailsid&eits main application
in generalization, it is also considerably employed in Gapgic Information Systems
(GIS) to reduce digital map data for speeding up processmpvasualization and to
homogenize different data sets in the process of data mtiegr A variety of tech-

niques has been presented by researchers in differenxt®fifebler 1964, Lang 1969,
Reumann and Witkam 1974, Jenks 1981].

In automated cartography, the most used algorithms are l#ssical Ramer-
Douglas-Peucker (RDP) algorithm [Ramer 1972, Douglas authker 1973], Visva-
lingam’s algorithm [Visvalingam and Whyatt 1993] and WangdaMduller's algo-
rithm [Wang and Muller 1998]. Unfortunately, like the majgrof algorithms, none of
them maintains the spatial relationship among features lagce, cannot preserve the
original topology of most maps (Figure 1). This is becaussy ttake the polyline in
isolation, without considering the features in its vigmitMany ideas [Muller 1990,
Edwardes et al. 1998, McKeown et al. 1999] have been puldighattempt to remove
the topological conflicts in a post-processing stage, luthé cases where the original
data is not present, some inconsistencies cannot be avoided

There exists a second class of algorithms which takes intsideration the
whole map throughout the course of the simplification [vanRteorten and Jones 1999,

©

PR N

(@) (b)

Figure 1. (a) Original map and (b) its inconsistent simplific ation outcome.

Ai et al. 2000, van der Poorten and Jones 2002]. In these itpods a constrained De-
launay triangulation is performed on the whole collectidnnmap features in a pre-
processing stage. The triangulation-based approach fsahmse algorithms to implicitly
preserve the topology of the map while removing verticemftbe polylines. Due to its

great capability to store spatial relationships and toadtgpological conflicts, the De-
launay triangulation is also used to implement other gdizatéon operators, such as
exaggeration, collapse and amalgamation [Jones et al].1$85vever, when the con-
cern is only on the simplification, this approach may be egpen since the vicinity of

any feature or subfeature must be retriangulated whenegareimoved from the map.

A third class of algorithms modifies a polyline in contexkitey into consideration
only the relationship between the polyline with nearby deas, instead of the complete
map features. In these techniques, there is no need forarpecessing or post-processing
stage. The topology of the polyline is conserved along thepkfication procedure by
preserving the sidedness of the features that are insid®mgex hull. Many of these
techniques are based on an isolated simplification proeeatual simply include the sid-
edness topological constraint when selecting a vertex ioserted in or removed from
the polyline. This simplification approach may be an altévedo the triangulation-based
ones for efficiently solving topological conflicts.

Well-known algorithms on simplification in context are peated in the papers
of de Berget al. [de Berg et al. 1998] and Saalfeld [Saalfeld 1999]. The formerks
on subdivision simplification, where the polylines are afaspart of two polygons in the
map. It succeeds in generating a topologically consistelyfipe that is at a maximum
error e from the original one and has as few vertices as possible.lattexr works on a
more general polyline simplification, involving linear faees that may not be part of a
polygon, as, for example, rivers and roads. It improves tassical RDP algorithm for
recovering the topology of the original polyline. Saalfgldlgorithm is more popular
than de Berget al’s, because of the popularity of the RDP algorithm, and beead its
simpler implementation and faster processing.

For the sake of simplicity, the algorithms on simplificationcontext unify the
handling of linear and point features by considering thdices of a linear feature as

point features. However, in some particular cases, evdreivertices of a line segment
(handled as point features) lie on the correct side, thedamgment can still intersect the
the simplified polyline. The example of Figure 2 illustratess situation. Before the
simplification (Figure 2(a)), the poingg andp, lie outside the shaded region. After the
simplification (Figure 2(b)), although the sidedness of ploets is preserved, the line
segmenp: p; intersects the simplified polyling’.

P 2

b2 P D2

W-

(@) (b)

Figure 2. A case where point feature consistency fails in han dling linear fea-
tures: (a) the original polyline P and the line segment p1p3, and (b) the simplified
polyline P’ that preserves the sidedness of p; and po, but still intersects pips.

Our motivation for this work is twofold. Firstly, we wouldke to remedy the in-
consistent outcomes when handling linear features as faaitures. Secondly, we would
like to devise an incremental sidedness test that is apjtegdor handling linear features
and can be easily integrated to Saalfeld’s algorithm. Theareder of this paper is or-
ganized as follows. We present, in Section 2., a brief amalyShow consistency has
been studied in the previous works. Then, in Section 3., vaéa@xhow to overcome the
sidedness problem with linear features. Afterwards, irtiSeel., we give an algorithmic
solution to Saalfeld’s algorithm. After then, in Section\we give some basic results of
our strategy and compare them to Saalfeld’s solution. Kjinial Section 6., we present
some concluding remarks and our future research directions

2. Related Work

As previously stated, de Berg al’s work is on subdivision simplification. They assume
that every polyline of a map is part of two polygons of the suistbn. For the purpose
of validating their procedure, they formalized the defomitiof consistency of polylines
with respect to point features as follows. [72tandP’ be two simple polylines oriented
from vertexwv; to vertexv,, and letF' be a set of point features. The polylinBsand
P’ are said to be consistent with respecttoif there exists a simple polylin@ oriented
from vertexwv,, to vertexwv; that closes bot® and’P’ to simple polygons which have the
same subset of points éf in their interior as depicted in Figure 3. One can show that if
there exists such a polyling then any other simple polyline that closes b@tand P’

in simple polygons will give the same result for the consisteof 7 andP’. In other
words, the polyline? andP’ are consistent with respect fono matter what polygons
of the subdivision they are part of.

The reasoning of this definition is quite simple. Let us cdaesithat, after the
simplification of the configuration depicted in Figure 3, gaygon’]3, formed byP and
C (Figure 4(a)), was replaced by the polygith, formed byP’ andC (Figure 4(b)). A
point feature is consistently placed with respecBtandy?’, if it lies inside or outside both
polygons. In Figure 4(b), the point features lying insideand outsidepd’ are indicated

Figure 3. Consistency of polylines P and P’ with respect to a set of point features.

with downward arrows and those lying outsiieand inside}3’ are indicated with upward
arrows. From Figure 4(c), we may see that the point featyieg betweeri? andP’ are
the only points that have different sidedness classifinatiibh respect ta3 and<3’.

(@) (b)

Figure 4. (a, b) Consistency of the polygons 3 and ‘B’ with respect to a set of
point features. (c) The only features that are on the wrong si de lie between the
polylines P and P’.

The definition of consistency given by de Begal. is valid only for point fea-
tures. Without additional constraints, the point featunasistency cannot be used for
handling linear features. Applying this definition on theesiillustrated in Figure 2, we
may close the polylin@ and?’ and build the polygon$3 and}3’, respectively, as shown
in Figure 5. Even with all points on the correct side with espto’3 and¥’, intersec-
tions still occur. This is because although the extremeb@tegment are on the correct
side, its intermediate points lie on the wrong side.

P 24

D2 P D2

(@) (b)

Figure 5. Case of inconsistency with areal features: (a) ori ginal polygon of a
subdivision and (b) inconsistent simplified polygon.

In his work, Saalfeld concentrates not only on featuresahatn the wrong poly-
gon, but also on features that lie on the wrong side of a lifesgture. According to him,
point features always change their sidedness, if they appéd betwee® andP’. Fig-
ure 6 gives an example of this situation. Among the pointuiesst of the figure, only the
white ones lie betwee® andP’. Three of them are belo® and aboveP’ and two of
them are abové and belowP’. Actually, this is a generalization of the point feature
consistency, defined by de Beggal,, for polylines that are not part of polygons.

Figure 6. The sidedness of polylines for detecting inconsis tent point features.

Another important contribution of Saalfeld’s work is thetrgle inversion prop-
erty, stated as follows. When two segments replace one sggm@’ (or vice-versa),
the only point features that invert their sidedness aregthside the triangle formed by
the replaced segment and the two replacing segments. FHgadicates the three points
inside the triangle that inverted their sidedness in comparto Figure 6. Saalfeld uses
this property in his algorithm to efficiently update the sldess classification of features
after the insertion of a vertex in the simplified polyline.

Figure 7. Triangle inversion property.

So far, as we know, works on simplification in context, thatlaased on reducing
linear to point features, are not able to correctly handiedr features.

3. Handling Linear Features

First of all, we have to identify the cases where the conscstdor point features fails
with linear features. Let us consider the configuration giure Figure 8(a). The line
segmentg;v;, andv,v; replace respectively the subpolylin®g, andP,;. Notice that

p1 is considered to be on the correct side, even if some intaateedoints of the line
segmenp;p; are not. That is because the subpolylidg crosses the simplifying line
segment; v, of the subpolylineP;, and forms the region depicted in Figure 8(b) where
p; lies. One can show that inconsistencies may occur whenestds@olylineP,,;, crosses
the simplifying segmeni_v; of another subpolylin@.,.

The solution we adopted is very simple. We apply separatedysidedness cri-
terion to each subpolyline and its correspondent simpigysegment. Figures 9(a) and

(b)

Figure 8. (a) Case of inconsistency with (b) the incorrect si dedness classification
in the bounded region.

9(b) show the application of this criterion for the case ajufe 8. Notice thap, is on
the wrong side with respect to both subpolylines, elimimgthe problematic region. We
formalize the consistency for linear features as follonat 72 be a polyline,P’ be a sim-
plified version ofP, andF’ be a set of vertices of linear features. The polylifeand P’
are said to be consistent with respecttdaf the polygons formed by each subpolyliFg;
and its correspondent line segment; contain no element of'. Figure 9(c) illustrates
an example of a consistent simplification.

(b) ()

Figure 9. Our strategy to handle linear features.

We consider that the interior of the polygons (representethb shaded regions
in Figure 9) are determined with the parity (or odd-evengrilVe compute the number
crossings between a ray from the feature and the polygonedioy a subpolyline and
its correspondent simplifying line segment. If the numbdasrossings is odd, the feature
is on the wrong side; otherwise, it is on the correct sideyféglLO(a) and 10(b)). For
elucidating how the linear feature consistency works, vieduce the parity property as
follows. Two points are considered to be on the same side ofygpn, if a line connect-
ing them crosses the polygon an even number of times. Otbenthey are considered
to be on opposite sides. Figures 10(c) and 10(d) illustrateexamples of the parity
property. Notice that the crossings on self-intersectioigts of a polyline are counted as
many as the number of segments intersect on it.

We proceed to formalize a sufficient point feature-basedlitimm for ensuring
consistent linear simplification.

Proposition 1. Let’P;; be a subpolyline of the polylirfe and letz;v; be its correspondent
simplifying segment i®’. If a line segmeni;p; does not intersect the original polylirf,
and the pointgy, andp, are both outside the polygdl;; formed byP;; andv,v;, then
P1p2 does not interseat;v;.

(b) (d)

Figure 10. (a, b) Computing sidedness with the parity rule an d (c, d) the applica-
tion of the parity property.

Proof. From the fact thap,p; does not intersed® (and consequentl;;) andp; andp.

are both outsidg3;;, we have thap, andp, do not coincide with the line segmemn;,

and, consequently; p; andv;v; do not overlap. Therefore, they can intersect at most in
one single point. From the parity property and from the faatjt; andp, are on the same
side of the polygor3;;, we have that the line segmenp, crossegp;; an even number of
times. Sincepp; does not intersed®;;, if there is any crossings, it must be between the
line segment$;v; andp;p;. However, since they can intersect in no more than a single
point, the number of crossings betwegm, and‘P;; to be even must be zero. Hence,
P1p2 does not interseatv;. O

When applying the conditions of Proposition 1 to each sudpa of P and its
correspondent line segmenti, we ensure that; p, will not intersectP’. Hence, our
approach guarantees that any linear feature that doestactet the original polylin@
will not intersect the segments of the simplified polylirf&s Since it is more restrictive
than the point feature consistency, we can use it to unifphahdle both point and linear
feature, without making any distinction between them. la tiext section we present
an algorithmic solution that can correctly replace thengia inversion test devised in
Saalfeld’s algorithm.

4. The Algorithm

In this section we present an algorithmic solution for cotlgehandling linear features.
We replace the triangle inversion one by our proposed glyateSaalfeld’s algorithm. To
be self-contained, Saalfeld’s algorithm is briefly presént Section 4.1.. After then, in
Section 4.2., our solution is described.

4.1. Saalfeld’s Algorithm

Saalfeld [Saalfeld 1999] proposes some modifications toRB® algorithm that give
it the capability of recovering the topology of the origir@dlyline. His strategy is to
successively add vertices to the “inconsistent” segmeriteolyline until all errors are
removed. His algorithm is convergent, because, in the veais#, it adds all vertices of the
original polyline, recovers the original geometry and, seoquently, the original topology
of the map. Naturally, in real data sets, the worst case dlne&r occur. His algorithm
is divided in two steps, as illustrates the flowchart of Fegi.. The first step consists
only in the application of the RDP in the input polylifewhile a given toleranceis not
achieved and the second step is comprised of the topolagpaadction procedures.

Saalfeld’s
Algorithm /

Figure 11. Flowchart of Saalfeld’s algorithm.

The correction step is depicted in Figure 12 and works asval For each sub-
polyline P;; replaced by the polyline segmemnt; in the simplified polylineP’, the al-
gorithm determines its convex hull. Each subpolyline isntlassociated to the list of
features that are inside its convex hull. These featureesept potential topological con-
flicts. This list may include point features, vertices ofgiéouring polylines, and the
remaining vertices of the polyline itself (namely the veg8v;, such that: < i ork > 7).
The sidedness of these features are computed with the palety

N Prj

Figure 12. Correction step of Saalfeld’s algorithm: select ing features inside the
convex hull, and computing and updating their sidedness cla ssification.

After the initialization, for each subpolylin®;; that has features on the wrong
side, the algorithm breaks its correspondent line segmenby adding the farthest ver-
texvy. It updates the sidedness classification of the externakpi the current convex
hull, using the triangle inversion property. Then, it splite convex hull in two and se-

lects the external points of the resulting convex hulls.eAthat, it calls the correcting
procedure for the subpolylingg;, and?;;. Since the whole process is restarted indepen-
dently for the two subpolylines, the verticesBf, must be checked with respect to the
convex hull of P;, and vice-versa. If some vertices of one subpolyline ieterin the
other subpolyline convex hull, their sidedness is computigal the parity rule.

To understand how intersections may occur, let us consideapplication of
Saalfeld’s algorithm under tolerance to the polylineP of Figure 13(a). Because of
the oo-tolerance, the first step (RDP algorithm) adds no vertioegB’t In the second
step the algorithm first calculates the number of crossirighe pointsp;, p,, andps
and classifies their sidedness (Figure 13(b)). Spces on the wrong side, it adds the
farthest vertexo, and updates the sidedness classificatiopspthat is inside the trian-
gle Avyvgvg (Figure 13(c)). Then, it handles independently the sudpy P, , and
P, s, after evaluating the dependency of their vertices. Ashalfeatures are on the cor-
rect side with respect t®, 5, no further splitting should be applied on it. Regarding to
P, 4, the verticess; andvg are inserted in its list of features (Figure 13(d)). Bothtee:s
are considered to be on the wrong side. The algorithm addeetiexv; and updates the
sidedness classification pf, vs andwv; (Figure 13(e)). Observe that is on the wrong
side, but the algorithms stops. That is because there is ne changes foP; ; andPs 4.

Figure 13. Saalfeld’s algorithm.

Observe, from Figure 13(c), that the triangle inversiorperty is equivalent to the
point consistency strategy of de Bextal.. However, Saalfeld’s algorithm adds more ver-
tices to the simplified polyline, due to its independenttireant of distinct subpolylines.
Nevertheless, his algorithms is not yet able to remove &rgections.

4.2. Update of Sidedness Classification

Our strategy is based on the fact that the relationship leetveefeature and the original
polyline never changes throughout the course of the siroatitin. This permits us to
associate the feature to precomputed data that store thi®nship. We divide our strat-
egy in two stages. In the first stage, we compute the crosbetygeen the upward ray

from a featuref and a subpolyliné®;;, as depicted in Figure 14(a), and fill them in a data
structure associated # In the second stage, after breaking the line segmenin two
new line segments;v, andv,v;, we update the sidedness classificatiorf @fith respect

to the subpolyline®;;, andP;;, as shown in Figures 14(b) and Figure 14(c), respectively.
We present a pseudocode of our algorithm that can be eatlyrated to Saalfeld’s.

U18

Us V18

(@) (b) (©)

Figure 14. Stages to overcome the triangle inversion proper ty: (a) computation
of crossings between the upward ray from feature f and (b, c) update of its sid-
edness classification with respect to the resulting subpoly lines.

Besides its point coordinates andy, we associate to the featuré the ar-
ray cr ossi ngs and the indicedegi n andend, as depicted in the structure of Fig-
ure 15(a). The arragr ossi ngs is used to store the indices of the line segmentB;pf
that cross the upward ray frorfh Since in real maps the number of crossings is usually
very small in comparison to the number of line segments bpiegessed, one expects
the arraycr ossi ngs to be very small too. The variableggi n andend store initially
the first and last indices afr ossi ngs. Figure 15(b) illustrates the initial state of the
arraycr ossi ngs and the indicebegi n andend. (The elemen} of the array is illus-
trated just for the purpose of explanation.) Observe thantimber of crossings can be
directly obtained by the subtractigend — begi n).

(- R
Type Feat ure
Begin begi n end
X, y: Float; ‘

crossi ngs: Integer(];

begi n, end: Integer; 0(1] 2] 3| 4|5

| End) I 71 91121141 lGI

(@) (b)

Figure 15. (a) The data structure used in our strategy and (b) its visual represen-
tation for the polyline of Figure 14(a).

The procedureomputeCrossings outlined in Algorithm 1 performs the compu-
tation of the crossings between the ray and the original clybpe, stores them in the
array and initializes the indices. From lif8, a crossing is found when (1) the subpoly-
line changes its side with respect to the rayi(r Si de andpr evSi de are different)
and (2)f is below the current line segment. Observe, in Bi®¥ that the algorithm firstly
stores the indices in a linked list. This is because, befooegssing, it does not know

the number of crossings. After the computation, the contéthe list is finally copied

to the array, for which enough memory has been allocated 1[#). Since the search for
crossings is done from+1 toj (line 06), the indices of the crossed line segments are
stored in ascending order. The ordered array has a specdifiogiin the update stage.

ProcedurecomputeCrossings(P: Polyline; i ,j : Integer; var p: Feature)
01 Var

02 k: Integer;

02 | i st: IntegerList;

03 prevSi de, currSide: Side

04 Begin

05 prevSi de «— (P[i].x < p.x) ?left : right;
06 Fork «i +1toj do

07 curr Si de «— (P[k].x < p.x) ?left : right;

08 If currSi de # prevSi de .and. p is below line segmerR[k]Plk- 1] then
09 Pushk inli st;

10 End if

11 prevSi de « curr Si de;

12 End for

13 Allocate memory fop.cr ossi ngs and copy the content &fi st to it;
14 p.begin—0

15 p.end — i st .si ze

16 End

Algorithm 1. Compute the crossings between the upward ray fr om feature f and
the line segments of subpolyline P i and store the indices of the intersecting
segments in the array cr ossi ngs associatedto f.

In the update stage, to determine the number of crossingeafgward ray from
f with the subpolylines?;, andP;;, the algorithm adopts the following strategy. Since
the algorithm has already computed the crossings ®jtrand stored them, it just looks
for the first element after the indéxof the breaking vertex,) in the arraycr ossi ngs.
Let us reconsider the example of Figure 14, whiere 12. The algorithm allocates two
distinct copies off for P;;, andPy;. Then, it looks for the first element kr ossi ngs
greater thark, and finds the elemenitd of index 3. After then, it updates the index
begi n andend of the copies off as depicted in Figure 16. The ascending order of
the arraycr ossi ngs permits the algorithm to perform a binary search. To avodal th
overhead of copyingr ossi ngs, the copies off just keep a reference to it. After
the update process, we can obtain the number of crossingsébr subpolyline just by
subtracting the new indices.

begi n end begi n end
y
o|l1]2] 3] 4 ol1]2[3]| 4]5

I7l9llle4llGl I7l91121141161

(@) (b)

Figure 16. Results of the update stage of the first strategy fo r the subpolylines of
(a) Figure 14(b) and (b) Figure 14(c).

For computing the sidedness of a given featfirthe algorithm has time complex-
ity O(n), due to the search for crossings, and memory compléXty), due to the array
cr ossi ngs. For updating the sidedness classificatiorf athe binary search gives time
complexityO(logn). The new copies of keep just a reference tor ossi ngs, so there
Is no overhead for copying the array. The processing timéaisfalgorithm is compara-
ble to the time complexity of the triangle inversion testcdngse the array of crossings is
usually very small. In Section 5., we present some resudiisvillidate this statement.

5. Results

To validate our theoretical study of consistency for linksatures, we present some re-
sults of our approach and compare them to those of the paire consistency used
with Saalfeld’s algorithm. We examine the basic cases wBagdfeld’s strategy fails in
preserving the original polyline topology. For each imaithe, first square presents the
original polyline, the second square shows the outline @fif8ll’s algorithm, and the
third square exhibits the outline of our approach. The tegepresent typical cases of
intersections (Figures 17(a) and 17(b)), self-intersesti(Figures 17(c) and 17(d)), and
misplaced point features (Figures 17(e) and 17(f)) thatiecion Saalfeld’s algorithm with
point feature consistency, but are correctly handled vhighlinear feature consistency.

— = =

(a) (b)

N\

(©) (d)

(e) (f)

Figure 17. Comparison between the point feature consistenc y and linear feature
consistency in Saalfeld’s algorithm.

To validate our algorithmic solution for ensuring the tamgtal correctness of
both point and linear features, we compare it with the tri@amgversion test in terms of
time performance. Table 1 gives the processing time of bvdiegjies for maps with
different number of points. Notice that the processing tohé¢éhe array of crossings is

very close to the one of the triangle inversion test, everifermap with more vertices.
This is because the number of crossings and, consequémlgjze of the array are very
small when compared to the number of vertices of the polglin€hus, the search for
crossings in the array can be considered of constant timelesity and the performance
of the algorithms can be considered equivalent. Anothepimant result that we achieved
with our proposal is that the additional number of vertides is required to preserve the
topological consistency is insignificant. In all cases thattested, it is less than one
vertex in 4,000 inserted by Saalfeld’s algorithm (approadefy 0.025%).

Original Simplified map
map Triangle inversion| Array of crossings
#-Points| Time | #-Points| Time | #-Points

26,536 0.930s| 7,288 0.935s| 7,288
52,639 1.310s| 12,165| 1.320s| 12,167
68,506| 2.312s| 15,683] 2.330s| 15,685
103,450 3.010s| 29,713 3.110s| 29,713
126,404| 3.080s| 25,769| 3.140s| 25,775
166,157|| 5.650s| 24,954| 5.750s| 24,987

Table 1. Comparison of time performance between the triangl e inversion test and
the strategy with array of crossings.

6. Concluding Remarks

In this paper, we firstly studied the common problem of usiggtoint feature consistency
for handling linear features in topologically consistealytine simplification algorithms.
We observed that, if no pre-processing is carried out inrdalsatisfy some conditions, a
few arrangements of linear features can still lead to ietdrens. To overcome this prob-
lem, we presented a more restrictive consistency consti@iravoiding both changes
of sidedness of point and linear features and intersecbenseen linear features. We
consider that the sidedness of a point or a vertex of a linmmeagmust be individually
checked against each subpolyliRg of the original polyline and its correspondent sim-
plifying line segment;; in the output polyline. This simple theoretical solutiommpés

us to uniformly handle both point and linear features.

In the practical context, the main contribution of this palpes on an algorithmic
strategy that can replace the triangle inversion test eyepln Saalfeld’s algorithm. Our
strategy is based on the fact that, once the crossings aneuted) they can be stored in
a data structure and recovered whenever one needs. Wesiddihe ins and outs of the
presented strategy and showed that its time complexityngpeoable to the triangle in-
version test. We also gave a pseudocode of the procedumnéyabe directly integrated
to Saalfeld’s algorithm. Finally, we presented some rasoitour procedure and com-
pared it to the ones of triangle inversion test, showingtth@procedures have equivalent
performances, but our technique always preserves theagyof the original map.

Our future researches point mainly to the development ofpaltgically con-
sistent simplification procedure that would treat all théyjwes together in a global
approach. This strategy has the advantage of testing orlgdlrent vertices on the

simplified polylines, instead of checking all the verticésh@ nearby polylines, resulting

in better generalizations and faster processing. We interséparate the simplification
procedure from the topological control, so that it may besgue to ensure topologi-

cal consistency in distinct isolated simplification algams. We also plan to place this
new algorithm as a faster alternative to the triangulabased approach for preserving
topological consistency in simplification.

Acknowledgments

We would like to acknowledge the Coordination for the Impnment of Higher Edu-
cation Personnel Foundation (CAPES) and the State of S8o Ragearch Foundation
(FAPESP, Grant N2003/13090-6) for financial support.

References

Ai, T., Guo, R., and Liu, Y. (2000). Safe sets for line simgkfiion. InThe 9th Interna-
tional Symposium on Spatial Data Handlingages 30—43.

de Berg, M., van Kreveld, M., and Schirra, S. (1998). Topalally correct subdivision
simplification using the bandwidth criteriorCartography and Geographic Informa-
tion Systems25(4):243-257.

Douglas, D. H. and Peucker, T. K. (1973). Algorithms for taduction of the number of
points required for represent a digitized line or its cdrica. Canadian Cartographer
10(2):112-122.

Edwardes, A., Mackaness, W., and Urvin, T. (1998). Selfatathg generalization al-
gorithms to automatically derive multi scale boundary sétsThe 8th International
Symposium on Spatial Data Handlinqgages 361-372, Vancouver, Canada.

Jenks, G. F. (1981). Lines, computers and human frailtie®\nhals of the Association
of American Geographersolume 71, pages 1-10.

Jones, C.-B., Bundy, G.-L., and Ware, J.-M. (1995). Map gdimtion with a triangu-
lated data structureCartography and Geographic Information Syster28(4):317—
331.

Lang, T. (1969). Rules for the robot draughtsmBme Geographical Magazind2(1):50—
51.

McKeown, D., McMahill, J., and Caldwell, D. (1999). The udespatial context in linear
feature simplification. IrseoComputation 9Mary Washington College, Fredericks-
burg, Virginia.

Midller, J. C. (1990). The removal of spatial conflicts in lgeneralisationCartography
and Geographic Information Syste§(2):141-149.

Ramer, U. (1972). An iterative procedure for the polygongbraximation of plane
curves.Computer Graphics and Image Processit224—-256.

Reumann, K. and Witkam, A. P. M. (1974). Optimizing curversegtation in computer
graphics. In Gunther, A., Levrat, B., and Lipps, H., edifé?sceedings of the Inter-
national Computing Symposiympages 467-472. American Elsevier.

Saalfeld, A. (1999). Topologically consistent line sinfiphtion with the Douglas-
Peucker algorithmCartography and Geographic Information Sciepn2é(1):7-18.

Tobler, W. R. (1964). An experiment in the computer geneadiion of map. Technical
report, Office of Naval Research, Geography Branch.

van der Poorten, P. and Jones, C. (1999). Customisabledimerglisation using Delaunay
triangulation. InThe 19th International Cartographic Association Conferen

van der Poorten, P. and Jones, C. (2002). Characterisatibrgeneralisation of car-
tographic lines using Delaunay triangulatioimternational Journal of Geographical
Information Sciencel6(8):773-795.

Visvalingam, M. and Whyatt, J. D. (1993). Line generalisatby repeated elimination
of points. Cartographic Journgl30(1):46-51.

Wang, Z. and Midiller, J. C. (1998). Line generalization basednalysis of shape char-
acteristics.Cartography and Geographic Information Syste2®(4):264—-275.

